एकल छिद्र / स्लिट / झिर्री से फॉन हॉफर विवर्तन ,निम्निष्ठ , उच्चिष्ठ बिंदु , single slit diffraction fraunhofer experiment in hindi
(single slit diffraction fraunhofer experiment in hindi) एकल छिद्र / स्लिट / झिर्री से फॉन हॉफर विवर्तन : एकल स्लिट से फ्रोन हॉफर विवर्तन में लेंस L1 से फोकस बिंदु पर एक बिंदु प्रकाश स्रोत S का रखा जाता है | जब बिंदु प्रकाश स्रोत S से प्रकाश किरणें लेंस L1 पर आपतित कि जाती है तो यह प्रकाश किरणें मुख्य अक्ष के समान्तर हो जाती है और समतल तरंगाग्र ww’ में परिवर्तित हो जाती है जब यह समतल तरंगाग्र अवरोधक AB पर आपतित होता है तो अवरोधक AB का प्रत्येक बिंदु द्वितीयक तरंगिकाओं की भांति व्यवहार करता है | अवरोधक A व B के मध्य की दूरी a है |
अवरोधक AB से जब प्रकाश किरणें लेंस L2 द्वारा पर्दे के केंद्र बिंदु O पर आपतित होती है तो इन प्रकाश किरणों द्वारा तय की गयी दूरी एक समान होती है जिससे इन प्रकाश किरणों में पथांतर शून्य होता है और पर्दे के केन्द्र बिंदु O पर संपोषी व्यतिकरण होता है। जिससे पर्दे के केंद्र बिंदु O पर सदैव दीप्त फ्रिंज प्राप्त होता है जिसे केन्द्रीय उच्चिष्ठ या मुख्य उच्छिष्ट कहा जाता है।
पर्दे के बिंदु P पर विवर्तन का अध्ययन करने के लिए अवरोधक AB के बिन्दु A व B से बिंदु P पर पहुँचने वाली प्रकाश तरंग द्वारा तय की गयी दूरी क्रमशः AP व BP होती है। BP>AP
अत: प्रकाश तरंगो के मध्य पथांतर ज्ञात करने के लिए बिंदु A से BP पर लम्ब AN डालते है।
अत: इन प्रकाश तरंगो के मध्य पथांतर △x हो तो –
△x = BP – AP
चूँकि BP = BN + NP
अत: NP = AP
BP = BN + AP
△x = BN + AP – AP
△x = BN समीकरण-1
△ ABN से –
sinθ = BN/AB
sinθ = △x/a
△x = asinθ समीकरण-2
जो कि फ्रोन हॉफर विवर्तन में पथांतर का प्रतिबन्ध है।
यहाँ a = अवरोधक AB के मध्य की दूरी
θ = बिंदु P की क्षैतिज से कोणीय स्थिति
यदि अवरोधक AB की बिंदु P पर पहुँचने वाली प्रकाश तरंगो के मध्य पथांतर △x = λ हो तो अवरोधक AB को दो भागो से मिलकर बना हुआ माना जा सकता है जो क्रमशः AO’ व O’B है एवं इन भागों से बिंदु P पर पहुँचने वाली तरंगो के मध्य λ/2 का पथांतर होता है जिससे इन प्रकाश किरणों के मध्य विनाशी व्यतिकरण होता है और पर्दे पर निम्निष्ठ प्राप्त होता है जिसे प्रथम निम्निष्ठ कहते है।
प्रथम निम्निष्ठ के लिए –
n = 1 , θ = θ1
पथांतर △x = λ
समीकरण-2 से –
a sinθ1 = λ
जो कि प्रथम निम्निष्ठ के लिए प्रतिबंध है।
इसी प्रकार द्वितीय निम्निष्ठ के लिए –
n = 2 , θ = θ2
पथांतर △x = 2λ
समीकरण-2 से –
a sinθ2 = 2λ
इसी प्रकार n वें निम्निष्ठ के लिए n = n , θ = θn
पथांतर △x = nλ
समीकरण-2 से –
a sinθn = nλ
यदि प्रकाश तरंगो के मध्य λ/2 , 3λ/2 , 5λ/2 ………(2n-1)λ/2 का पथांतर हो तो प्रकाश किरणों के मध्य संपोषी व्यतिकरण होता है और पर्दे पर दीप्त फ्रिंज प्राप्त होती है जिसे द्वितीयक उच्चिष्ठ कहा जाता है एवं इन बिन्दुओ पर क्रमशः प्रथम-द्वितीयक उच्चिष्ठ , द्वितीय-द्वितीयक उच्चिष्ठ , तृतीय-द्वितीयक उच्चिष्ठ .. . . . . n वाँ द्वितीयक उच्चिष्ठ कहते है।
n वें उच्चिष्ठ के लिए –
θ = θn
पथांतर △x = (2n+1)λ/2
समीकरण-2 से –
a sinθn = (2n+1)λ/2
जो कि n वें द्वितीयक उच्चिष्ठ के लिए उच्चिष्ठ के लिए प्रतिबन्ध (समीकरण) है।
एकल स्लिट से फ्रोन हॉफर विवर्तन के लिए तीव्रता I व कलांतर Θ के मध्य वक्र निम्न प्रकार प्राप्त होता है।
हिंदी माध्यम नोट्स
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi sociology physics physical education maths english economics geography History
chemistry business studies biology accountancy political science
Class 12
Hindi physics physical education maths english economics
chemistry business studies biology accountancy Political science History sociology
English medium Notes
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi physics physical education maths entrepreneurship english economics
chemistry business studies biology accountancy
Class 12
Hindi physics physical education maths entrepreneurship english economics