दोलन गति की परिभाषा क्या है , सरल आवर्त गति , एक समान वृत्ताकार पथ पर सरल आवर्त गति oscillation class 11 in hindi
oscillation class 11 in hindi , दोलन गति की परिभाषा क्या है , सरल आवर्त गति , एक समान वृत्ताकार पथ पर सरल आवर्त गति , वेग , त्वरण :-
दोलन :
आवर्त गति : किसी पिण्ड या वस्तु की होने वाली ऐसी गति जिसमे पिण्ड निश्चित समयान्तराल में बार बार अपने निश्चित पथ को बार बार दोहराता है , आवर्त गति कहलाती है।
अनाआवर्त गति : किसी वस्तु या पिण्ड की होने वाली ऐसी गति जिसमे पिण्ड निश्चित समयान्तराल में पुनः निश्चित पथ को नहीं दोहराता है तो ऐसी गति को अनाआवर्त गति कहते है।
दोलन या कम्पन्न गति : ऐसी गति जिसमे कोई कण या पिण्ड अपनी साम्य अवस्था के आस पास गति करता है , दोलन या कम्पन्न गति कहलाता है।
सरल आवर्त गति : सरल आवर्त गति में ऋणायन बल का मान विस्थापन के समानुपाती तथा विपरीत दिशा में रहता है।
F ∝ -g
F = -Kg
यहाँ एक स्थिरांक है जिसे प्रत्यानयन बल स्थिरांक कहते है।
(-) चिन्ह विपरीत दिशा को व्यक्त करता है।
एक समान वृत्ताकार पथ पर सरल आवर्त गति : –
माना कोई कण A त्रिज्या के वृताकार पथ पर w कोणीय वेग से गति कर रहा है। प्रारंभ में यह कण x अक्ष पर स्थित है। t समय बाद θ कोण बनाकर P बिंदु पर पहुँच जाता है।
अत:
W2’ = θ/t
Θ = wt समीकरण-1
ΔOPM से –
sinθ = PM/OP
PM = OP sinθ
y = A sinθ समीकरण-2
PM = op sinθ
Y = A. sinθ समीकरण-3
समीकरण-1 व समीकरण-2
Y = A sinθwt
Y = A sinθ(w + Φ)
ΔOPN से –
Cosθ = NP/OP
NP = OPcosθ
x = opcosθ
x = Acosθ
x = Acos(wt)
x = Acost (wt + θ)
सरल आवर्त गति का ग्राफीय निरूपण –
(i) विस्थापन का ग्राफीय निरूपण –
(1) Y = Asin(wt)
W = 2π/T
Y = Asin (2π/T x t)
यदि t = 0
Y = Asin (2π/T x 0)
Y = Asin0
Y = 0
(ii) यदि t = T/4
Y = Asin (2π/T x t)
Y = Asin (2π/T x T/4)
Y = Asinπ/2
y = A
(iii) यदि t = T/2
Y = Asin (2π/T x t)
Y = Asin (2π/T x T/2)
Y = Asinπ
y = 0
(iv) यदि t = 3T/4
Y = Asin (2π/T x t)
Y = Asin (2π/T x 3T/4)
Y = Asin3π/2
y = -A
(v) यदि t = T
Y = Asin(2π/T x t)
Y = Asin (2π/T x T)
Y = Asin (2π)
Y = 0
(2) x = Acos(wt)
W = 2π/T
x = Acos(2π/T x t)
(i) यदि t = 0
x = Acos(2π/T x 0)
x = Acos(0)
x = A
(ii) t = T/4
x = Acos(2π/T x t)
x = Acos(2π/T x T/4)
x = Acos(π/2)
x = 0
(iii) यदि t = T/2
x = Acos(2π/T x t)
x = Acos(2π/T x T/2)
x = Acos(π)
x = -A
(iv) यदि t = 3T/4
x = Acos(2π/T x t)
x = Acos(2π/T x 3T/4)
x = Acos(3π/2)
x = 0
(v) यदि t = T
x = Acos(2π/T x t)
x = Acos(2π/T xT )
x = Acos(2π )
x = A
सरल आवर्त गति में कण का वेग –
Y = Asin(wt) समीकरण-1
समीकरण-1 t के सापेक्ष अवकलन करने पर –
dy/dt = d/dt Asin(wt)
V = Ad/dt(sinwt)
V = A x coswt x w
V = Aw coswt
V = Aw coswt समीकरण-1
w = 2π/T
V = Aw cos ( 2π/T x t)
(i) यदि t = 0
V = Aw cos ( 2π/T x t)
V = Aw cos ( 2π/T x 0)
V = Aw cos(0)
V = Aw
(ii) यदि t = T/4
V = Aw cos ( 2π/T x T/4)
V = Aw cos(π/2)
V = 0
(iii) यदि t = T/2
V = Aw cos ( 2π/T x t)
V = Aw cos ( 2π/T x T/2)
V = Aw cos(π)
V = Aw(-1)
V = -Aw
(iv) यदि t = 3T/4
V = Aw cos ( 2π/T x t)
V = Aw cos ( 2π/T x 3T/4)
V = Aw cos ( 3π/2)
V = 0
(v) यदि t = T
V = Aw cos ( 2π/T x t)
V = Aw cos ( 2π/T x T)
V = Aw cos ( 2π)
V = Aw (1)
V = Aw
सरल आवर्त गति कर रहे कण का त्वरण :-
V = Aw cos(wt) समीकरण-1
समीकरण-1 का t के सापेक्ष अवकलन करने पर –
dV/dt = d/dt (Aw coswt)
a = Aw d/dt coswt
a = Aw (-sin wt x w)
a = -Aw2sin wt
a = -w2 Asin wt
चूँकि y = Asinwt
a = -w2 y
त्वरण का ग्राफीय निरूपण –
a = -w2 Asin wt
चूँकि w = 2π/T
a = -Aw2sin (2π/T x t )
(i) यदि t = 0
a = -Aw2sin (2π/T x 0)
a = -Aw2sin (0)
a = 0
(ii) यदि t = T/4
a = -Aw2sin (2π/T x t )
a = -Aw2sin (2π/T xT/4 )
a = -Aw2sin (π/2 )
a = -Aw2
(iii) t = T/2
a = -Aw2sin (2π/T x t )
a = -Aw2sin (2π/T x T/2 )
a = -Aw2sin (π)
a = 0
(iv) यदि t = 3T/4
a = -Aw2sin (2π/T x 3T/4 )
a = -Aw2sin (3π/2 )
a = -Aw2 (-1)
a = Aw2
(v) t = T
a = -Aw2sin (2π/T x t )
a = -Aw2sin (2π/T x T )
a = 0
दोलन गति किसे कहते हैं ? (Oscillatory Motion in hindi definition)
जब कोई कण या पिण्ड एक निश्चित पथ पर निश्चित समयान्तराल से अपनी गति को दोहराता है तो उसकी गति को आवर्ती गति (periodic motion) कहते हैं। उदाहरणार्थ-सूर्य के चारों ओर ग्रहों का चक्कर लगाना, पृथ्वी के चारों ओर चन्द्रमा या उपग्रहों का चक्कर लगाना, घड़ी की सुइयों की गति, परमाणु के कक्ष में इलेक्ट्रॉनों की गति, सरल लोलक की गति आदि । आवर्त गति में कण या पिण्ड को एक निश्चित अवस्था से गति प्रारम्भ कर उसी अवस्था में पुनः आने में जितना समय लगता है। उसे आवर्त काल (time period) कहते हैं। इसे T द्वारा व्यक्त किया जाता है।
यदि कण या पिण्ड एक निश्चित बिन्दु के इधर-उधर निश्चित समय में बार-बार अपनी गति को दोहराता है तो पिण्ड या कण की गति को दोलनी गति (oscillatory motion) कहते हैं और कण या पिण्ड को दोलक (oscillator) कहते हैं। दोलन करते हुए लोलक की गति, स्वरित्र या वाद्य यंत्र के तारों के कम्पन, स्प्रिंग से लटके भार को खींचकर छोड़ने पर भार की दोलन गति, झूले पर बैठकर झूलना, जालक (lattice) के परमाणुओं के कम्पन इत्यादि इसी प्रकार के गति के उदाहरण हैं। सभी दोलन गतियाँ आवर्त गतियाँ होती है परन्तु सभी आवर्त गतियाँ दोलन गति नहीं हो सकती हैं। प्रकृति में पायी जाने वाली सभी दोलन गतियों में सर्वाधिक महत्वपूर्ण सरल आवर्त गति (simple harmonicmotion) होती है। ऐसा केवल गणितीय व्याख्या की सरलता की दृष्टि से नहीं है अपितु प्रकृति में पायी जाने वाली सभी दोलन गतियाँ, सरल आवर्त गतियों या इनके संयोजन से बनी गातया (harmonics) होती हैं।
हिंदी माध्यम नोट्स
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi sociology physics physical education maths english economics geography History
chemistry business studies biology accountancy political science
Class 12
Hindi physics physical education maths english economics
chemistry business studies biology accountancy Political science History sociology
English medium Notes
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi physics physical education maths entrepreneurship english economics
chemistry business studies biology accountancy
Class 12
Hindi physics physical education maths entrepreneurship english economics