विद्युत स्थितिज ऊर्जा (electric potential energy in hindi) , सूत्र , SI मात्रक , विमा , वैद्युत स्थिरवैद्युत
(electric potential energy in hindi) , विद्युत स्थितिज ऊर्जा सूत्र , SI मात्रक , स्थिरवैद्युत स्थितिज ऊर्जा (electrostatic potential energy in hindi) , विमा , वैद्युत प्रकार :-
विद्युत स्थितिज ऊर्जा (electric potential energy) : वैद्युत स्थितिज ऊर्जा एक अदिश राशि है लेकिन यह धनात्मक , ऋणात्मक अथवा शून्य भी हो सकती है।
वैद्युत स्थितिज ऊर्जा का मात्रक कार्य या ऊर्जा के मात्रक के समान होता है अर्थात विद्युत स्थितिज ऊर्जा का SI पद्धति में मात्रक “जूल” होता है।
कभी कभी ऊर्जा को इलेक्ट्रॉन-वोल्ट में भी व्यक्त किया जाता है अत: इसका मात्रक “इलेक्ट्रॉन-वोल्ट” भी हो सकता है।
एक इलेक्ट्रॉन वोल्ट = 1.6 x 10-19 जूल
विद्युत स्थितिज ऊर्जा का मान निर्देश बिंदु पर निर्भर करता है। सामान्यतया अनंत पर अर्थात r = ∞ पर स्थितिज ऊर्जा शून्य ली जाती है।
अनेक आवेशो के कारण किसी बिंदु आवेश की विद्युत स्थितिज ऊर्जा
विद्युत क्षेत्र में किसी बिंदु पर एक बिन्दु आवेश की स्थितिज ऊर्जा , आवेश को त्वरित किये बिना अर्थात गतिज ऊर्जा को नियत रखते हुए (प्रारंभिक व अंतिम गतिज ऊर्जा समान रखते हुए Ki = Kf) निर्देश बिंदु (अनंत पर) से उस बिंदु तक ले जाने में किये गए कार्य के बराबर होता है। विद्युत स्थितिज ऊर्जा का गणितीय प्रदर्शन का सूत्र U = qV है।
यहाँ q वह आवेश है जिसकी विद्युत स्थितिज ऊर्जा ज्ञात करनी है एवं V उस आवेश q की स्थिति पर स्रोत आवेशो के कारण विद्युत विभव है।
यहाँ ध्यान दे कि सूत्र में आवेश q तथा विद्युत विभव V को चिन्ह सहित रखते है।
आवेशों के निकाय की विद्युत स्थितिज ऊर्जा electric potential energy of a system of charges
इसके उपयोग तब किया जायेगा जब एक से अधिक आवेश गति करते है।
यह आवेशों के एक निकाय को अन्नत पृथक्करण से किसी एक विशेष विन्यास में लाने के लिए आंतरिक विद्युत क्षेत्र के विरुद्ध बाह्य कारक के द्वारा किये गए कार्य के बराबर होता है।
आवेशो के निकाय के प्रकार : आवेशों का निकाय दो प्रकार का हो सकता है –
- बिंदु आवेश निकाय
- सतत आवेशित निकाय
- बिंदु आवेश निकाय: बिन्दु आवेशों के निकाय की व्युत्पत्ति निम्न प्रकार की जाती है –
सभी आवेशो को अन्नत पर रखे। अब एक एक करके आवेशो को इनकी स्थिति पर लाते है एवं आवश्यक कार्य ज्ञात करते है। निकाय की स्थितिज ऊर्जा सभी कार्यों के बीजगणितीय योग के बराबर होती है।
माना W1 = प्रथम आवेश को लाने में किया गया कार्य है।
W2 = प्रथम आवेश के कारण बल के विरुद्ध द्वितीय आवेश को लाने में किया गया कार्य।
W3 = प्रथम और द्वितीय आवेशों के कारण बल के विरुद्ध तृतीय आवेश को लाने में किया गया कार्य।
इसी तरह
Wn = प्रथम , द्वितीय , तृतीय . . . . . . . . . . n-1 आवेशों के कारण बल के विरुद्ध n वें आवेश को लाने में किया गया कार्य अत: इस बिंदु आवेश के निकाय की कुल विद्युत स्थितिज ऊर्जा PE = W1 + W2 + W3 + . . . . . + Wn
इस श्रेणी में n(n-1)/2 = nC2 पद है।
प्रश्नों को हल करने के लिए (गणना विधि के लिए) :
बिंदु आवेश निकाय की विद्युत स्थितिज ऊर्जा U = आवेशों की अन्तक्रिया का योग
U = (U12 + U13 + . . . . . + U1n ) + (U23 + U24 + . . . . . +U2n ) + (U34 + U35 + . . . + U3n ) + . . . .. . .
सममित आवेश वितरणों के लिए गणना विधि :
प्रत्येक आवेश की अन्य आवेशों के कारण स्थितिज ऊर्जा PE ज्ञात करिए।
यदि U1 = प्रथम आवेश की अन्य समस्त आवेशों के कारण स्थितिज ऊर्जा PE = U12 + U13 + . . .. . . + U1n
U2 = द्वितीय आवेश की अन्य समस्त आवेशों के कारण स्थितिज ऊर्जा PE = U21 + U23 + . . .. . . + U2n
तब निकाय की कुल स्थितिज ऊर्जा PE = (U1 + U2 + . . . . Un)/2
2. सतत आवेशित निकाय
सतत आवेशित निकाय के लिए वैद्युत स्थितिज ऊर्जा की व्युत्पत्ति निम्न प्रकार है –
इस ऊर्जा को स्व-ऊर्जा भी कहा जाता है।
समान आवेशित गोलीय कोश के लिए स्व ऊर्जा ज्ञात करने की विधि : इसके लिए विधि एक का प्रयोग करते है। एक अनावेशित कोश लेते है और अब कोश की सतह पर एक एक करके अनन्त से आवेशो को लाया जाता है। इस प्रक्रिया में आवश्यक कार्य , स्थितिज ऊर्जा के रूप में संचित हो जाता है।
माना हम गोले को आवेश q देते है एवं हम इसे अतिरिक्त आवेश dq देते है।
आवेश dq को अनंत से इस कोश तक लाने में किया गया कार्य है।
dW = (dq)(Vf -Vi)
dW = (dq) (Kq/R – 0) = Kq.dq/R
Q आवेश देने के लिए आवश्यक कुल कार्य W है अत: q=0 से q = Q तक समाकलन करने पर W = ∫kqdq/R = KQ2/2R
यह कार्य स्थितिज ऊर्जा के रूप में संचित होता है।
अत: आवेशित गोलीय कोश के कारण स्थितिज ऊर्जा W = KQ2/2R
समरूप आवेशित ठोस गोले के कारण स्व ऊर्जा ज्ञात करना : इस स्थिति में हम एक ठोस आवेशित गोले की कल्पना करते है। हम अनंत से एक एक करके आवेशों को गोले तक लाते है जिससे गोले का आकार बढ़ जाता है।
माना q आवेश गोले पर दिया गया है तथा इसकी त्रिज्या r है अब हम इसे अतिरिक्त आवेश dq देते है जिससे इसकी त्रिज्या dr से बढ़ जाती है। dq आवेश को अनंत से गोले तक लाने में आवश्यक कार्य W = dq(Vf – Vi) = (dq)(Kq/r – 0) = Kqdq/r
Q आवेश देने के लिए आवश्यक कुल कार्य W = ∫Kqdq/r
q = p(4πr3/3)
dq = p(4πr2dr)
r = 0 से r = R तक समाकलन करने पर –
W = ∫Kp(4πr3/3)p(4πr2dr)/r
निम्न समीकरण को हल करने पर यह निम्न प्रकार प्राप्त होता है –
W = 3KQ2/5R = ठोस गोले के लिए स्व ऊर्जा या विद्युत स्थितिज ऊर्जा है।
स्थिरवैद्युत स्थितिज ऊर्जा (electrostatic potential energy in hindi) : जिस प्रकार गुरुत्वीय क्षेत्र में किसी द्रव्यमान की स्थितिज ऊर्जा की परिभाषा की जाती है , उसी प्रकार किसी विद्युत क्षेत्र में किसी आवेश की स्थितिज ऊर्जा की परिभाषा कर सकते है।
माना एक स्रोत आवेश +Q के कारण उत्पन्न विद्युत क्षेत्र की तीव्रता E है। एक सूक्ष्म धन परिक्षण आवेश +q0 को स्रोत आवेश +Q के प्रतिकर्षण के विरुद्ध बिंदु A से B तक लाया जाता है।
हम यह मान लेते है कि परिक्षण आवेश +q0 इतना छोटा है कि यह +Q के विन्यास में कोई परिवर्तन नहीं करता है। हम यह भी मान लेते है कि परिक्षण आवेश पर एक बाहरी बल Fext इस प्रकार लगाया जाता है कि यह परिक्षण आवेश पर लगने वाले विद्युत बल Fe को ठीक प्रकार से संतुलित करता है अर्थात q0 पर परिणामी बल शून्य हो जाता है अत: परिक्षण आवेश की गति में त्वरण नहीं होता है।
इस स्थिति में बाह्य बल द्वारा किया गया कार्य विद्युत बल द्वारा किये गए कार्य के बराबर एवं ऋणात्मक होगा और पूर्णत: परिक्षण आवेश q0 में इसकी स्थितिज ऊर्जा के रूप में एकत्र हो जाता है।
बिंदु B पर पहुँचते ही यदि बाहरी बल को हटा दिया जाए तो वैद्युत बल परिक्षण आवेश q0 को स्रोत आवेश +Q से दूर ले जायेगा। बिन्दु B पर परिक्षण आवेश में एकत्र स्थितिज ऊर्जा परिक्षण आवेश को गतिज ऊर्जा देने में इस प्रकार प्रयुक्त बिंदु पर गतिज और स्थितिज ऊर्जाओं का योग संरक्षित रहता है।
धन परिक्षण आवेश +q0 को A से B तक ले जाने में बाह्य बल द्वारा कृत कार्य –
WAB = A∫B Fext.dr = – A∫B Fedr . . . . . . .समीकरण-1
विद्युत बल के विरुद्ध किया गया यह कार्य स्थितिज ऊर्जा के रूप में निहित हो जाता है। यह ध्यान देने की बात है कि विद्युत क्षेत्र में प्रत्येक बिंदु पर +q0 आवेश की कुछ न कुछ स्थितिज ऊर्जा निश्चित रूप से होगी अत: +q0 आवेश को A से B तक ले जाने में कृत कार्य बिन्दुओं B व A पर उसकी स्थितिज ऊर्जाओं के अंतर के बराबर होगा।
अत: ΔU = UB – UA = WAB . . . . . . .समीकरण-2
इस प्रकार वैद्युत स्थितिज ऊर्जा में परिवर्तन की परिभाषा निम्न प्रकार दे सकते है –
“बिन्दुओं B और A के मध्य वैद्युत स्थितिज ऊर्जा में परिवर्तन उस न्यूनतम कार्य के तुल्य है जो बाह्य बल द्वारा धन परिक्षण आवेश को बिना त्वरण के A से B तक ले जाने में किया जाता है। “
यह ध्यान देने वाली बात है कि स्थिर वैद्युत क्षेत्र द्वारा किसी आवेश को एक बिंदु से दुसरे बिंदु तक ले जाने में किया गया कार्य केवल प्रारंभिक और अंतिम बिंदु की स्थितियों पर ही निर्भर करता है , इस बात पर नहीं कि अंतिम स्थिति किस मार्ग से प्राप्त की जाती है।
समीकरण-2 द्वारा स्थितिज ऊर्जा में परिवर्तन की परिभाषा कार्य के पदों में की गयी है। इस प्रकार ऊर्जा में परिवर्तन ही महत्वपूर्ण है , उसका किसी बिंदु पर वास्तविक मान नहीं।
अत: शून्य ऊर्जा वाले बिंदु को चुनने की आजादी है। एक निश्चित संख्या में आवेश वितरण के लिए स्थितिज ऊर्जा को अनन्त पर शून्य मान लेते है अत: जब बिंदु A अन्नत पर है तो समीकरण-2 से –
W ∞B = UB – UA = UB – 0 = UB
या UB = W ∞B
अत: किसी आवेश विन्यास के कारण उत्पन्न विद्युत क्षेत्र में किसी बिन्दु पर किसी आवेश की स्थितिज ऊर्जा उस कार्य के बराबर होती है जो किसी बाह्य बल द्वारा उस आवेश को अन्नत से उस बिंदु तक लाने में किया जाता है।
हिंदी माध्यम नोट्स
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi sociology physics physical education maths english economics geography History
chemistry business studies biology accountancy political science
Class 12
Hindi physics physical education maths english economics
chemistry business studies biology accountancy Political science History sociology
English medium Notes
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi physics physical education maths entrepreneurship english economics
chemistry business studies biology accountancy
Class 12
Hindi physics physical education maths entrepreneurship english economics