बंधित गति (constrained motion in hindi) , रस्सी बंधन (string constraint) , नततल बंधन (wedge constraint)
(constrained motion in hindi) बंधित गति :
रस्सी बंधन (string constraint) : जब वस्तुएँ एक रस्सी द्वारा बंधी हो और रस्सी निम्नलिखित गुण रखती है।
(a) रस्सी की लम्बाई अपरिवर्तित है अर्थात रस्सी अविस्तारित हो।
(b) रस्सी हमेशा तनी हुई रहनी चाहिए , ढीली नहीं पड़नी चाहिए।
तो वस्तुओं की गति से सम्बन्धित राशियों के मध्य रस्सी की लम्बाई के अनुदिश और विस्तार की दिशा में एक निश्चित सम्बन्ध होता है।
रस्सी बंधन को हल करने के पद
पद 1. प्रश्न में वस्तुओं और रस्सियों की संख्या को पहचानों।
पद 2. गति की अज्ञात राशियाँ जैसे विस्थापन , वेग और त्वरण को प्रदर्शित करने के लिए ‘चर’ मानो।
(i) एक रेखा के अनुदिश गति कर रही वस्तु को एक चर द्वारा निर्धारित करो।
(ii) एक तल में गति कर रही वस्तु को दो चरों द्वारा निर्धारित करो।
(iii) त्रिविमीय दिशा में गति कर रही वस्तु को तीन चरों द्वारा निर्धारित करो।
पद 3. एक सम्पूर्ण रस्सी को पहचान कर इसको विभिन्न खण्डो में विभाजित करो और समीकरण को निम्न रूप में लिखो।
l1 + l2 + l3 + l4 + l5 + l6 = l
पद 4. उपरोक्त सम्बन्ध को समय के साथ अवकलित करो।
dl1/dt + dl2/dt + dl3/dt . . . .. . . .. = 0
dl1/dt = खंड 1 की वृद्धिदर को प्रदर्शित करता है। खंड 1 के दोनों सिरे हमेशा दो अलग अलग वस्तुओं से जुड़े रहते है। इसलिए वस्तुओं के वेगों को रस्सी के अनुदिश लेने पर dl1/dt = V1 + V2
यदि वेग , रस्सी की लम्बाई को बढाने की चेष्टा करे तो धनात्मक चिन्ह लेते है तथा यदि वेग रस्सी की लम्बाई को कम करने की चेष्टा करे तो ऋणात्मक चिन्ह लेते है।
इस तरह +V1 प्रदर्शित करता है , कि रस्सी का ऊपरी सिरा V1 दर से बढ़ रहा है , और निचला सिरा रस्सी की लम्बाई में V2 दर से वृद्धि कर रहा है।
पद 5. उपरोक्त सभी पदों की पुनरावृत्ति अलग अलग रस्सियों के लिए करो।
अब हम निचे दिए गए प्रश्न को देखेंगे –
यहाँ l1 + l2 = नियत
dl1/dt + dl2/dt = 0
(V1 – VP) + (V2 – Vp) = 0
VP = (V1+V2)/2
इसी प्रकार , ap = (a1 + a2)/2 इस परिणाम को याद रखे।
उदाहरण : m1 और m2 द्रव्यमान के दो ब्लॉक द्रव्यमानहीन घिरनी से पारित अविस्तारित रस्सी के सिरों से बंधे हुए है। यदि m1 > m2 है तो ज्ञात करो।
(i) प्रत्येक ब्लॉक का त्वरण
(ii) रस्सी में तनाव
हल : माना ब्लॉक m1 नीचे की तरफ तथा ब्लॉक m2 ऊपर की तरफ गति करता है। यह वास्तव में एक कल्पना है तथा यह वास्तविक दिशाओं को इंगित करता है। यदि a1 और a2 के मान धनात्मक प्राप्त होते है तो मानी गई दिशाएं सही है अन्यथा ब्लॉक विपरीत दिशा में गति करेंगे। चूँकि घिरनी द्रव्यमानहीन और चिकनी है इसलिए घिरनी के दोनों तरफ तनाव समान होगा। प्रत्येक ब्लॉक का मुक्त वस्तु रेखाचित्र (F.B.D) चित्र में प्रदर्शित है।
m1 और m2 ब्लॉक पर न्यूटन का द्वितीय नियम लागू करने पर –
ब्लॉक m1 के लिए m1g – T = m1a . . . . . .. . . समीकरण-1
ब्लॉक m2 के लिए -m2g + T = m2a2 . . . . . .. . . समीकरण-2
अज्ञातों की संख्या : T , a1 और a2 (तीन) और समीकरणों की संख्या केवल दो है।
अत: हमें इस प्रश्न को हल करने के लिए एक ओर समीकरण की आवश्यकता पड़ती है। यह बात ध्यान देने योग्य है कि जब भी समीकरणों की संख्या , अज्ञातों की संख्या से एक कम होती है तो हमें बन्धित गति के बारे में विचार चाहिए। अब हम इसके लिए गणितीय प्रक्रम की व्याख्या करते है।
बंधित सम्बन्ध कैसे प्राप्त करें ?
- प्रत्येक ब्लॉक के त्वरण की दिशा को मान ले। जैसे इस स्थिति में a1(निचे की तरफ) तथा a2(ऊपर की तरफ)
- एक स्थिर बिंदु के सापेक्ष , प्रत्येक ब्लॉक की स्थिति प्रदर्शित करो (सुगमता पर निर्भर करता है ) जैसे इस प्रश्न में घिरनी के केंद्र से |
- बंधित गति को पहचान कर कल्पित दूरियों के पदों में बंधित समीकरण को लिखो ; उदाहरण जैसे इस प्रश्न में रस्सी की लम्बाई नियत है जो –
इस प्रकार ,X1 + X2 = नियत
समीकरण के दोनों तरफ t के सापेक्ष अवकलन करने पर dx1/dt + dx2/dt = 0
बाएं तरफ का प्रत्येक पद ब्लॉक्स के वेग को प्रदर्शित करता है।
चूँकि हमें त्वरण में सम्बन्ध प्राप्त करना है , अत: हम इसको पुनः समय के सापेक्ष अवकलित करते है।
अत: d2x1/dt2 + d2x2/dt2 = 0
चूँकि ब्लॉक m1 नीचे की तरफ गतिमान माना गया है ( x1 समय के साथ बढ़ेगी )
अत: d2x1/dt2 = +a1
तथा ब्लॉक m2 को ऊपर की तरफ गतिमान माना है (x2 समय के साथ बढ़ेगी)
अत: d2x2/dt2 = -a2
अत: a1 – a2 = 0
या a1 = a2 = a (माना) यह आवश्यक बंधित सम्बन्ध है।
a1 = a2 = a समीकरण 1 और समीकरण-2 में प्रतिस्थापित कर समीकरण को हल करने पर
a = [(m1-m2)/(m1+m2)]g
T = [2m1m2/(m1+m2)]g
नततल बंधन (wedge constraint)
आवश्यक शर्तें –
- दोनों वस्तुएँ लगातार सम्पर्क में होनी चाहिए।
- वस्तुएं दृढ होनी चाहिए।
यदि दोनों वस्तुएँ लगातार सम्पर्क में हो तो दोनों वस्तुओं का सम्पर्क तल के लम्बवत सापेक्ष वेग शून्य होना चाहिए। सभी सम्पर्क तलों के लिए नततल बंधन लागू होता है।
दुसरे शब्दों में –
यदि दोनों वस्तुएँ लगातार सम्पर्क में है तथा उनकी आकृति अपरिवर्तित रहती हो तो दोनों वस्तुओं के सम्पर्क तल के लम्बवत दिशा के अनुदिश वेगों के घटक बराबर होने चाहिए।
हिंदी माध्यम नोट्स
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi sociology physics physical education maths english economics geography History
chemistry business studies biology accountancy political science
Class 12
Hindi physics physical education maths english economics
chemistry business studies biology accountancy Political science History sociology
English medium Notes
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi physics physical education maths entrepreneurship english economics
chemistry business studies biology accountancy
Class 12
Hindi physics physical education maths entrepreneurship english economics