कार्नो प्रमेय को सिद्ध कीजिए carnot theorem in thermodynamics in hindi कार्नो इंजन की उत्क्रमणीयता
Reversibility of Carnot’s Engine कार्नो प्रमेय को सिद्ध कीजिए carnot theorem in thermodynamics in hindi कार्नो इंजन की उत्क्रमणीयता ?
कार्नो चक्र एवं कार्नो का आदर्श इंजन (Carnot’s Cycle and Carnot’s Ideal Engine)
ऊष्मा इंजन की कार्य विधि के अध्ययन के लिए सर्वप्रथम सादी कार्नो (Sadi Carnot) ने सन् 1824 में एक सैद्धान्तिक इंजन की कल्पना की, जिसमें ऊष्मा का उपयोगी कार्य में परिवर्तन के अतिरिक्त अन्य किसी प्रकार से क्षय नहीं हो, तो ऐसे इंजन की दक्षता अधिकतम होगी। कार्नो ने अपने अध्ययन से यह जानने का प्रयत्न किया कि क्या यह अधिकतम दक्षता 100% हो सकती है।
कानों के इंजन में कार्यकारी पदार्थ की निश्चित अवस्था से प्रारम्भ कर विभिन्न उत्क्रमणीय प्रक्रमों द्वारा विभिन्न अवस्थाओं में से गुज़रते हुए पुन: प्रारम्भिक अवस्था में आना, कार्नो चक्र ( Carnot’s cycle) कहलाता है। कार्नो के आदर्श इंजन को चित्र (2.3-1 ) में दर्शाया गया है। इस इंजन के मुख्य भाग निम्न हैं :
(i) ऊष्मा स्रोत (Heat source)
यह उच्च ताप T,K पर एक अनन्त ऊष्मा धारिता वाला ऊष्मा भंडार (heat reservoir) होता है जिससे कार्यकारी पदार्थ द्वारा ऊष्मा ग्रहण करने पर भी इसका ताप नियत बना रहता है। इसका ऊपरी पृष्ठ पूर्णतः सुचालक होता है कार्यकारी पदार्थ स्रोत से ऊष्मा का ग्रहण कर सके ।
(ii) यान्त्रिक व्यवस्था एवं कार्यकारी पदार्थ (Mechanical arrangement and working substance) यान्त्रिक व्यवस्था के रूप में एक खोखला सिलिंडर लेते हैं जिसकी दीवारें पूर्णत: कुचालक तथा आधार पूर्णतः सुचालक होते हैं। इसमें पूर्णत: कुचालक पदार्थ से बना पिस्टन लगा होता है जो बिना घर्षण हानि के सिलिंडर में गति कर सकता है। सिलिंडर में आदर्श गैस ( ideal gas) कार्यकारी पदार्थ के रूप में भरी होती है।
(iii) ऊष्मा सिंक (Heat sink )
निम्न ताप T2K पर यह एक अनन्त धारिता वाला ऊष्मा भंडार (heat reservoir) होता है जिसमें कार्यकारी पदार्थ द्वारा अनुपयोगी ऊष्मा निष्कासित की जाती है परन्तु इसका ताप नियत रहता है। इसका ऊपरी पृष्ठ पूर्णत: सुचालक होता है ताकि कार्यकारी पदार्थ की ऊष्मा का इसमें निष्कासन कर सकें।
(iv) स्टैण्ड (Stand)
यह एक पूर्णतः कुचालक पदार्थ का स्टैण्ड होता है जिस पर सिलिंडर को रख कर बिना ऊष्मा हानि के पदार्थ का रूद्धोष्म प्रसारण या संपीडन किया जा सकता है।
कार्यविधि (Working)
कार्नो के अनुसार उपर्युक्त प्रकार के आदर्श इंजन से अधिकतम कार्य प्राप्त करने के लिए इसे एक निश्चित क्रम में उत्क्रमणीय प्रक्रमों के द्वारा प्रारम्भिक अवस्था में लाया जाता है। पूर्ण कार्नो चक्र को चार चरणों में विभाजित कर सकते हैं। कार्नो चक्र की प्रक्रियाओं को एक सूचक आरेख (indicator diagram) चित्र (2.3-2) द्वारा निरूपित किया जा सकता है। यह आरेख विभिन्न चरणों में कार्यकारी पदार्थ, आदर्श गैस के दाब P व आयतन V के परिवर्तनों को प्रदर्शित करता है।
(i) प्रथम प्रक्रम : समतापी प्रसार ( Isothermal expansion)
सर्वप्रथम सिलिंडर को ऊष्मा स्रोत पर रखते हैं जिससे कार्यकारी पदार्थ का ताप ऊष्मा स्रोत के ताप के बराबर T1K हो जाता है। माना इस ताप पर कार्यकारी पदार्थ का दाब PA तथा आयतन VA है।यह कार्यकारी द्रव्य की प्रारम्भिक अवस्था कहलाती है। इसे चित्र (2.3-2) में अवस्था A से दर्शाया गया है।
अब पिस्टन पर धीरे-धीरे दाब घटाकर इसे ऊपर खिसकने दिया जाता है जिससे गैस का समतापी प्रसार हो। इस प्रसार में गैस कुछ ऊष्मा Q1 स्रोत से ग्रहण कर अवस्था B पर पहुंच जाती है। यह परिवर्तन सूचक आरेख में वक्र AB द्वारा निरूपित किया गया है। अवस्था B पर माना गैस का दाब PB तथा आयतन VB है। चूंकि समतापी प्रसार में गैस की आन्तरिक ऊर्जा में परिवर्तन शून्य होता है इसलिए ऊष्मागतिकी के प्रथम नियम से समतापी प्रसार में ग्रहण की गई ऊष्मा गैस द्वारा किये गये कार्य के बराबर होती है।
(ii) द्वितीय प्रक्रम : रूद्धोष्म प्रसार (Adiabatic expansion) अब सिलिंडर को ऊष्मा स्रोत से हटाकर कुचालक स्टैण्ड पर रखते हैं ताकि कार्यकारी पदार्थ बाह्य परिवेश से पूर्णतया विलगित ( isolated) हो जाये । पिस्टन पर पुनः धीरे-धीरे दाब घटाकर गैस का स्वतः रूद्धोष्म प्रसार होने दिया जाता है। रूद्धोष्म प्रसार इतना होने दिया जाता है कि गैस का ताप घट कर ऊष्मा सिंक के ताप के बराबर, T2K हो जाये। माना इस प्रकार से गैस अवस्था C पर पहुंच जाती है जिस दाब पर Pc व आयतन Vc है । इस रूद्धोष्म प्रसार को सूचक आरेख में BC वक्र द्वारा दर्शाया गया है। रुद्धोष्म प्रसार में गैस द्वारा किया गया कार्य
इस प्रक्रम के पश्चात् गैस का दाब इतना कम हो जाता है कि गैस में और अधिक कार्य करने की क्षमता नहीं. रह जाती है। अत: अब गैस को पुन: प्रारम्भिक अवस्था में लाने के लिए दाब को दो चरणों में बढ़ाते हैं।
(ii) नियत ऊष्मा स्रोत ताप T1 पर कार्नो इंजन की दक्षता स्रोत एवं सिंक के तापान्तर (T 1 – T2) के साथ बढ़ती है अर्थात् सिंक का ताप T2 कम होने पर इंजन की दक्षता में वृद्धि होती है।
(iii) स्रोत के ताप में वृद्धि करने की अपेक्षा सिंक के ताप में कमी करने से कार्नो इंजन की दक्षता में अधिक वृद्धि होती है।
(iv) दक्षता में वृद्धि के लिए (T2/T1) कम करना चाहिए। दक्षता 1 अर्थात् 100% से सदैव कम होती है। n = 1 बनाने के लिए या तो T2 = OK होना चाहिए अथवा T1 =∞ असम्भव है। होना चाहिए। ये दोनों अवस्थायें प्राप्त करना
अतः कार्नो इंजन की दक्षता व्यावहारिक रूप से शत-प्रतिशत कभी नहीं हो सकती है।
(v) कार्नो इंजन की दक्षता रूद्धोष्म प्रसार अनुपात p पर भी निर्भर करती है। p में वृद्धि करने दक्षता में वृद्धि होती है।
कार्नो इंजन तथा रेफ्रिजरेटर (Carnot’s Engine and Refrigerator)
कार्नो इंजन की उत्क्रमणीयता एवं कार्नो प्रमेय (Reversibility of Carnot’s Engine and Carnot Theorem)
कार्नो इंजन के चक्रीय प्रक्रम में सभी प्रक्रम (समतापी एवं रूद्धोष्म) आदर्श गैस में धीमी गति से किये जाते हैं। इस प्रकार ये चारों प्रक्रम उत्क्रमणीय होते हैं।
आदर्श व्यवस्था में कल्पना की गई है कि विकिरण, संचालन एवं संवहन द्वारा किसी प्रकार ऊष्मा की हानि नहीं होती है। इंजन के ऊष्मा स्रोत एवं सिंक की ऊष्मा धारितायें अनन्त होने के कारण इनके ताप भी सदैव नियत रहते हैं। इस प्रकार कार्नो इंजन एक आदर्श इंजन है तथा उत्क्रमणीय प्रक्रम की सभी आवश्यक शर्तों का पालन करता है अर्थात् कार्नो इंजन एक पूर्णतः उत्क्रमणीय इंजन होता है। कार्नो इंजन की दक्षता केवल स्रोत व सिंक के तापों पर निर्भर है, कार्यकारी पदार्थ पर नहीं । अतः व्यापक रूप से दो निर्धारित तापों के बीच कार्य करने वाली सभी उत्क्रमणीय इंजनों (आदर्श इंजनों ) की दक्षता समान होती है।
कार्नो इंजन के विश्लेषण से निष्कर्ष निकलता है कि
“निश्चित स्रोत व सिंक के तापों के मध्य कार्यशील एक उत्क्रमणीय इंजन की दक्षता अधिकतम होती है तथा यह कार्यकारी पदार्थ की प्रकृति पर निर्भर नहीं होती । ”
उपर्युक्त कथन कार्नो प्रमेय ( Carnot theorem) कहलाता है।
कार्नो प्रमेय के दो भाग हैं :
(1) किन्हीं दिये गये दो तापों के बीच कार्य कर रहे किसी भी ऊष्मा इंजन की दक्षता उन्हीं के तापों के बीच कार्य कर रहे उत्क्रमणीय कार्नो इंजन की दक्षता से अधिक नहीं हो सकती अर्थात् उत्क्रमणीय कार्नो इंजन की दक्षता अधिकतम होती है।
(2) किन्हीं दिये गये दो तापों के बीच कार्य कर रहे सभी उत्क्रमणीय इंजनों की दक्षता समान होती है चाहे कार्यकारी द्रव्य की प्रकृति कुछ भी हो।
हिंदी माध्यम नोट्स
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi sociology physics physical education maths english economics geography History
chemistry business studies biology accountancy political science
Class 12
Hindi physics physical education maths english economics
chemistry business studies biology accountancy Political science History sociology
English medium Notes
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi physics physical education maths entrepreneurship english economics
chemistry business studies biology accountancy
Class 12
Hindi physics physical education maths entrepreneurship english economics