तुल्यता समुच्चय या तुल्यता वर्ग (equivalence class in hindi) , विभाग समुच्चय (quotient set) , प्रमेय , उत्पत्ति
विभाग समुच्चय (quotient set) , प्रमेय , उत्पत्ति , तुल्यता समुच्चय या तुल्यता वर्ग (equivalence class in hindi) ?
दो सम्बन्धों का संयोजन (composition of two relations) : माना A , B तथा C कोई तीन अरिक्त समुच्चय है और A से B में सम्बन्ध R तथा B से C सम्बन्ध S में दो सम्बन्ध है। दोनों सम्बन्धों का संयोजन SoR , A से C में एक सम्बन्ध है जो इस प्रकार परिभाषित है कि –
SoR = {(a,c) : b ∈ B एक ऐसा अवयव है कि aRb तथा bSc ; जहाँ a ∈ A तथा c ∈ C}
चित्रानुसार स्पष्ट है कि –
aRb , bSc → aSoRc
प्रमेय : किन्ही तीन समुच्चय A , B और C में सम्बन्ध R , A से B में और सम्बन्ध S , B से C में है अर्थात R ⊆ A x B और S ⊆ B x C तो सिद्ध कीजिये कि (SoR)-1 = R-1oS-1
उत्पत्ति : माना (a,c) ∈ SoR , तब
(a,c) ∈ SoR <=> (c,a) ∈ (SoR)-1
अब (c,a) ∈ (SoR)-1 <=> (a,c) ∈ SoR
<=> Ǝ b ∈ B : (a,b) ∈ R और (b,c) ∈ S
<=> Ǝ b ∈ B : (b,a) ∈ R-1 और (c,b) ∈ S-1
<=> Ǝ b ∈ B : (c,a) ∈ S-1 तथा (b,a) ∈ R-1
<=> Ǝ b ∈ B : (c,a) ∈ R-1OS-1
अत: (c,a) ∈ (SoR)-1 <=> (c,a) ∈ R-1OS-1
अर्थात (SoR)-1 = R-1OS-1
तुल्यता समुच्चय या तुल्यता वर्ग (equivalence class in hindi)
यदि सम्बन्ध R , किसी समुच्चय A पर परिभाषित कोई तुल्यता सम्बन्ध है तथा a ∈ A तो समुच्चय A के उन अवयवों का समुच्चय जो xRa सम्बन्ध को संतुष्ट करते है , जहाँ x ∈ A को a का तुल्यता वर्ग कहते है। इसे [a] से प्रदर्शित किया जाता है। गणित की प्रतिक भाषा के रूप में –
तुल्यता वर्ग , [a] = {x:x ∈ A , xRa}
इसी प्रकार b ∈ A के लिए ,
[b] = {y:y ∈ A , yRb}
स्पष्ट है कि तुल्यता वर्ग समुच्चय A का उपसमुच्चय है।
विभाग समुच्चय (quotient set) : किसी समुच्चय के तुल्यता वर्ग के समुच्चय को विभाग समुच्चय कहते है।
यदि कोई समुच्चय A और इसके तुल्यता वर्ग क्रमशः [a] , [b] , [c] . . . . . जहाँ a , b , c ∈ A तो {[a] , [b] , [c] ,. . . . } को विभाग समुच्चय कहते है। इसे गणित भाषा में प्रतीकात्मक रूप से A/R से व्यक्त किया जाता है।
अर्थात A/R = {[a] , [b] , [c] ,. . . . }
उदाहरण : यदि A किसी समतल में स्थित सरल रेखाओं का एक समुच्चय है और इसमें तुल्यता सम्बन्ध समान्तर का है अर्थात xRy → x||y , ∀ x , y ∈ A
माना समतल में स्थित कोई सरल रेखा a है तो सभी सरल रेखाओ का समुच्चय जो रेखा a के समान्तर है , तुल्यता वर्ग [a] है। यहाँ [a] से तात्पर्य उन समस्त रेखाओ के समुच्चय से है जो दिए गए समतल में और a के समान्तर है।
इसी प्रकार तुल्यता वर्ग [b] से तात्पर्य उन समस्त रेखाओं से है जो कि समतल में रेखा b के समान्तर है।
प्रमेय : यदि सम्बन्ध R समुच्चय A में तुल्यता सम्बन्ध है और a , b ∈ A, तो
1. a ∈ [a] अर्थात [a] अरिक्त है।
2. b ∈ [a] → [b] = [a]
3. [a] = [b] <=> (a,b) ∈ R
4. [a] ⋂ [b] = Φ या [a] = [b]
उत्पत्ति :
1. a ∈ [a]
पुनः R , समुच्चय A में तुल्यता सम्बन्ध है अत: R स्वतुल्य है , तब aRa सत्य है।
परन्तु [a] = {x : x ∈ A और xRa}
अत: aRa → a ∈ [a] अर्थात [a] अरिक्त है।
2. दिया गया है , b ∈ [a] तो सिद्ध करना है कि [b] = [a]
अब b ∈ [a] → bRa
मान लीजिये x तुल्यता वर्ग [b] का कोई स्वेच्छ अवयव है।
अत: x ∈ [b] → xRb
किन्तु R संक्रमक है। [R तुल्यता सम्बन्ध है। ]
अत: xRb , bRa → xRa
→ x ∈ [a]
इसी तरह से x ∈ [b] → x ∈ [a]
अत: [b] ⊆ [a] . . . .. . समीकरण-1
पुनः माना x तुल्यता वर्ग [a] का कोई स्वेच्छ अवयव है तो –
x ∈ [a] → xRa
लेकिन bRa → aRb ; R सममित है। [R तुल्यता सम्बन्ध है। ]
अब xRa , aRb → xRb
→ x ∈ [b]
इस प्रकार , x ∈ [a] → x ∈ [b]
अत: [a] ⊆ [b] . . . .. . समीकरण-2
समीकरण-1 और समीकरण-2 से –
[a] = [b]
3. [a] = [b] <=> aRb
माना [a] = [b] तो सिद्ध करना है कि aRb
R तुल्यता सम्बन्ध है , अत: यह स्वतुल्य है।
तब aRa
अत: aRa → a ∈ [a]
→ a ∈ [b] [क्योंकि [a] = [b] ]
→ aRb
अत: [a] = [b] → aRb
पुनः माना aRb तो सिद्ध करना है कि
[a] = [b]
माना x तुल्यता वर्ग [a] का कोई स्वेच्छ अवयव है।
तब x ∈ [a] → xRa
परन्तु aRb दिया है।
अत: xRa , aRb → xRb , [R संक्रमक है। ]
→ x ∈ [b]
इस प्रकार , x ∈ [a] → x ∈ [b]
अत: [a] ⊆ [b] . . . .. . समीकरण-1
पुनः x ∈ [b] → xRb
परन्तु aRb (दिया है ) → bRa [R सममित है। ]
अत: xRb , bRa → xRa
→ x ∈ [a]
इस प्रकार , x ∈ [b] → x ∈ [a]
अर्थात [b] ⊆ [a] . . . .. . समीकरण-2
समीकरण-1 और समीकरण-2 से ,
[a] = [b]
4. [a] ⋂ [b] = Φ या [a] = [b]
माना [a] ⋂ [b] ≠ Φ , तो सिद्ध करना है कि
[a] = [b]
अब [a] ⋂ [b] ≠ Φ
कम से कम एक अवयव x ऐसा है कि
x ∈ [a] ⋂ [b]
अब x ∈ [a] ⋂ [b] → x ∈ [a] और x ∈ [b]
→ xRa और xRb
→ aRx और xRb
→ aRb [R संक्रमक है। ]
→ [a] = [b]
अत: [a] ⋂ [b] ≠ Φ → [a] = [b]
दुसरे शब्दों में कहा जा सकता है –
[a] ≠ [b] → [a] ⋂ [b] = Φ
टिप्पणी : समुच्चय A के सभी तुल्यता वर्गों का संघ स्वयं समुच्चय A होता है अर्थात यदि [a] , [b] , [c] , [d] समुच्चय A के तुल्यता वर्ग हो तो A = [a] ⋃ [b] ⋃ [c] ⋃ [d]
हिंदी माध्यम नोट्स
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi sociology physics physical education maths english economics geography History
chemistry business studies biology accountancy political science
Class 12
Hindi physics physical education maths english economics
chemistry business studies biology accountancy Political science History sociology
English medium Notes
Class 6
Hindi social science science maths English
Class 7
Hindi social science science maths English
Class 8
Hindi social science science maths English
Class 9
Hindi social science science Maths English
Class 10
Hindi Social science science Maths English
Class 11
Hindi physics physical education maths entrepreneurship english economics
chemistry business studies biology accountancy
Class 12
Hindi physics physical education maths entrepreneurship english economics